IntegratedGradients¶

class
captum.attr._core.integrated_gradients.
IntegratedGradients
(forward_func)[source]¶  Parameters
forward_func (callable) – The forward function of the model or any modification of it

attribute
(inputs, baselines=None, target=None, additional_forward_args=None, n_steps=50, method='gausslegendre', internal_batch_size=None, return_convergence_delta=False)[source]¶ Approximates the integral of gradients along the path from a baseline input to the given input. If no baseline is provided, the default baseline is the zero tensor. More details regarding the integrated gradient method can be found in the original paper here: https://arxiv.org/abs/1703.01365
 Parameters
inputs (tensor or tuple of tensors) – Input for which integrated gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately.
baselines (scalar, tensor, tuple of scalars or tensors, optional) –
Baselines define the starting point from which integral is computed and can be provided as:
 a single tensor, if inputs is a single tensor, with
exactly the same dimensions as inputs or the first dimension is one and the remaining dimensions match with inputs.
 a single scalar, if inputs is a single tensor, which will
be broadcasted for each input value in input tensor.
 a tuple of tensors or scalars, the baseline corresponding
to each tensor in the inputs’ tuple can be:  either a tensor with matching dimensions to
corresponding tensor in the inputs’ tuple or the first dimension is one and the remaining dimensions match with the corresponding input tensor.
 or a scalar, corresponding to a tensor in the
inputs’ tuple. This scalar value is broadcasted for corresponding input tensor.
In the cases when baselines is not provided, we internally use zero scalar corresponding to each input tensor.
Default: None
target (int, tuple, tensor or list, optional) –
Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, no target index is necessary. For general 2D outputs, targets can be either:
 a single integer or a tensor containing a single
integer, which is applied to all input examples
 a list of integers or a 1D tensor, with length matching
the number of examples in inputs (dim 0). Each integer is applied as the target for the corresponding example.
For outputs with > 2 dimensions, targets can be either:
 A single tuple, which contains #output_dims  1
elements. This target index is applied to all examples.
 A list of tuples with length equal to the number of
examples in inputs (dim 0), and each tuple containing #output_dims  1 elements. Each tuple is applied as the target for the corresponding example.
Default: None
additional_forward_args (tuple, optional) – If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (nontuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to forward_func in order following the arguments in inputs. For a tensor, the first dimension of the tensor must correspond to the number of examples. It will be repeated for each of n_steps along the integrated path. For all other types, the given argument is used for all forward evaluations. Note that attributions are not computed with respect to these arguments. Default: None
n_steps (int, optional) – The number of steps used by the approximation method. Default: 50.
method (string, optional) – Method for approximating the integral, one of riemann_right, riemann_left, riemann_middle, riemann_trapezoid or gausslegendre. Default: gausslegendre if no method is provided.
internal_batch_size (int, optional) – Divides total #steps * #examples data points into chunks of size internal_batch_size, which are computed (forward / backward passes) sequentially. For DataParallel models, each batch is split among the available devices, so evaluations on each available device contain internal_batch_size / num_devices examples. If internal_batch_size is None, then all evaluations are processed in one batch. Default: None
return_convergence_delta (bool, optional) – Indicates whether to return convergence delta or not. If return_convergence_delta is set to True convergence delta will be returned in a tuple following attributions. Default: False
 Returns
 attributions (tensor or tuple of tensors):
Integrated gradients with respect to each input feature. attributions will always be the same size as the provided inputs, with each value providing the attribution of the corresponding input index. If a single tensor is provided as inputs, a single tensor is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned.
 delta (tensor, returned if return_convergence_delta=True):
The difference between the total approximated and true integrated gradients. This is computed using the property that the total sum of forward_func(inputs)  forward_func(baselines) must equal the total sum of the integrated gradient. Delta is calculated per example, meaning that the number of elements in returned delta tensor is equal to the number of of examples in inputs.
 Return type
attributions or 2element tuple of attributions, delta
Examples:
>>> # ImageClassifier takes a single input tensor of images Nx3x32x32, >>> # and returns an Nx10 tensor of class probabilities. >>> net = ImageClassifier() >>> ig = IntegratedGradients(net) >>> input = torch.randn(2, 3, 32, 32, requires_grad=True) >>> # Computes integrated gradients for class 3. >>> attribution = ig.attribute(input, target=3)

has_convergence_delta
()[source]¶ This method informs the user whether the attribution algorithm provides a convergence delta (aka an approximation error) or not. Convergence delta may serve as a proxy of correctness of attribution algorithm’s approximation. If deriving attribution class provides a compute_convergence_delta method, it should override both compute_convergence_delta and has_convergence_delta methods.
 Returns
Returns whether the attribution algorithm provides a convergence delta (aka approximation error) or not.
 Return type