Source code for captum.attr._core.feature_ablation

#!/usr/bin/env python3

# pyre-strict

import logging
import math
from typing import (
    Any,
    Callable,
    cast,
    Dict,
    Iterable,
    List,
    Optional,
    Protocol,
    Tuple,
    TypeVar,
    Union,
)

import torch
from captum._utils.common import (
    _expand_additional_forward_args,
    _expand_target,
    _format_additional_forward_args,
    _format_feature_mask,
    _format_output,
    _get_feature_idx_to_tensor_idx,
    _is_tuple,
    _maybe_expand_parameters,
    _run_forward,
)
from captum._utils.exceptions import FeatureAblationFutureError
from captum._utils.progress import progress
from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric
from captum.attr._utils.attribution import PerturbationAttribution
from captum.attr._utils.common import (
    _format_input_baseline,
    get_total_features_from_mask,
)
from captum.log import log_usage
from torch import dtype, Tensor
from torch.futures import collect_all, Future


IterableType = TypeVar("IterableType")

logger: logging.Logger = logging.getLogger(__name__)


class Progress(Protocol):
    def update(self, n: int = 1) -> Optional[bool]:
        """TQDM Update  method signature."""

    def close(self) -> None:
        """TQDM Close method signature."""


class NullProgress:
    def update(self, n: int = 1) -> Optional[bool]:
        return None

    def close(self) -> None:
        return None


def _parse_forward_out(forward_output: object) -> Tensor:
    """
    A temp wrapper for global _run_forward util to force forward output
    type assertion & conversion.
    Remove after the strict logic is supported by all attr classes
    """
    if isinstance(forward_output, Tensor):
        return forward_output

    assert isinstance(forward_output, (int, float)), (
        "the return of forward_func must be a tensor, int, or float,"
        f" received: {forward_output}"
    )

    # using python built-in type as torch dtype
    # int -> torch.int64, float -> torch.float64
    # ref: https://github.com/pytorch/pytorch/pull/21215
    return torch.tensor(forward_output, dtype=cast(dtype, type(forward_output)))


def process_initial_eval(
    initial_eval: Tensor,
    inputs: Iterable[Tensor],
    use_weights: bool = False,
) -> Tuple[List[Tensor], List[Tensor], Tensor, Tensor, int, dtype]:

    # number of elements in the output of forward_func
    n_outputs = initial_eval.numel()

    # flatten eval outputs into 1D (n_outputs)
    # add the leading dim for n_feature_perturbed
    flattened_initial_eval = initial_eval.reshape(1, -1)

    # Initialize attribution totals and counts
    attrib_type = flattened_initial_eval.dtype

    # Shape of attribution is the outputs * inputs dimensions.
    # where the inputs dimension should remove the batch size dimension.
    total_attrib = [
        # attribute w.r.t each output element
        torch.zeros(
            (n_outputs, *input.shape[1:]),
            dtype=attrib_type,
            device=input.device,
        )
        for input in inputs
    ]

    # Weights are used in cases where ablations may be overlapping.
    weights = []
    if use_weights:
        weights = [
            torch.zeros((n_outputs, *input.shape[1:]), device=input.device)
            for input in inputs
        ]

    return (
        total_attrib,
        weights,
        initial_eval,
        flattened_initial_eval,
        n_outputs,
        attrib_type,
    )


def format_result(
    total_attrib: List[Tensor],
    weights: List[Tensor],
    is_inputs_tuple: bool,
    use_weights: bool,
) -> Union[Tensor, Tuple[Tensor, ...]]:
    """
    Normalizes attributions by weights if enabled and
    formats output as single tensor or tuple.
    """
    # Divide total attributions by counts and return formatted attributions
    if use_weights:
        attrib = tuple(
            single_attrib.float() / weight
            for single_attrib, weight in zip(total_attrib, weights)
        )
    else:
        attrib = tuple(total_attrib)
    return _format_output(is_inputs_tuple, attrib)


def check_output_shape_valid(
    inputs: TensorOrTupleOfTensorsGeneric,
    num_examples: int,
    initial_eval: Tensor,
    modified_eval: Tensor,
    perturbations_per_eval: int,
) -> None:
    """
    Validates that the forward function's output shape scales correctly with
    input batch size when perturbations_per_eval > 1.

    When multiple perturbations are evaluated simultaneously
    (perturbations_per_eval > 1),
    the forward function must return outputs whose first dimension grows proportionally
    with the input batch size. This ensures the forward function is not aggregating
    results across the batch, which would prevent correct attribution calculation.

    Args:
        inputs (Tensor or tuple[Tensor, ...]): Input tensors used for evaluation.
                    The first dimension of inputs[0] is used to determine current
                    batch size.
        num_examples (int): The original number of examples (batch size) before
                    expansion for perturbations.
        initial_eval (Tensor): Output from forward function with original batch size
                    (perturbations_per_eval = 1). Used as baseline for shape comparison.
        modified_eval (Tensor): Output from forward function with expanded batch size
                    (batch_size = num_examples * n_perturb).
        perturbations_per_eval (int): Number of perturbations processed simultaneously.
                    Validation only occurs when this value is greater than 1.

    Raises:
        AssertionError: If perturbations_per_eval > 1 and the output shape does not
                    scale correctly. Specifically, if modified_eval.shape[0] is not
                    equal to n_perturb * initial_eval.shape[0], where n_perturb is
                    the ratio of current batch size to original batch size.
    """

    if perturbations_per_eval > 1:
        # if perturbations_per_eval > 1, the output shape must grow with
        # input and not be aggregated
        current_batch_size = inputs[0].shape[0]

        # number of perturbation, which is not the same as
        # perturbations_per_eval when not enough features to perturb
        n_perturb: int = current_batch_size // num_examples
        mod_perturb: int = current_batch_size % num_examples
        current_output_shape = modified_eval.shape

        # use initial_eval as the forward of perturbations_per_eval = 1
        initial_output_shape = initial_eval.shape

        assert (
            # check if the output is not a scalar
            current_output_shape
            and initial_output_shape
            and mod_perturb == 0
            # check if the output grow in same ratio, i.e., not agg
            and current_output_shape[0] == n_perturb * initial_output_shape[0]
        ), (
            "When perturbations_per_eval > 1, forward_func's output "
            "should be a tensor whose 1st dim grow with the input "
            f"batch size: when input batch size is {num_examples}, "
            f"the output shape is {initial_output_shape}; "
            f"when input batch size is {current_batch_size}, "
            f"the output shape is {current_output_shape}"
        )


def _should_skip_inputs_and_warn(
    current_feature_idxs: List[int],
    feature_idx_to_tensor_idx: Dict[int, List[int]],
    formatted_inputs: Tuple[Tensor, ...],
    min_examples_per_batch_grouped: Optional[int] = None,
) -> bool:
    """
    Determines whether a feature group should be skipped during attribution computation.

    This method checks two conditions that would cause a feature group to be skipped:
    1. If min_examples_per_batch_grouped is specified and any input tensor in the
       feature group has a batch size (0th dimension) smaller than this threshold.
    2. If all input tensors in the feature group are empty (contain no elements).

    Returns:
        bool: True if the feature group should be skipped, False otherwise.
    """
    should_skip = False
    all_empty = True
    tensor_idx_list = []
    for feature_idx in current_feature_idxs:
        tensor_idx_list += feature_idx_to_tensor_idx[feature_idx]
    for tensor_idx in set(tensor_idx_list):
        if all_empty and torch.numel(formatted_inputs[tensor_idx]) != 0:
            all_empty = False
        if min_examples_per_batch_grouped is not None and (
            formatted_inputs[tensor_idx].shape[0] < min_examples_per_batch_grouped
        ):
            should_skip = True
            break
    if should_skip:
        logger.warning(
            f"Skipping feature group {current_feature_idxs} since it contains "
            f"at least one input tensor with 0th dim less than "
            f"{min_examples_per_batch_grouped}"
        )
        return True
    if all_empty:
        logger.info(
            f"Skipping feature group {current_feature_idxs} since all "
            f"input tensors are empty"
        )
        return True
    return False


[docs] class FeatureAblation(PerturbationAttribution): """ A perturbation based approach to computing attribution, involving replacing each input feature with a given baseline / reference, and computing the difference in output. By default, each scalar value within each input tensor is taken as a feature and replaced independently. Passing a feature mask, allows grouping features to be ablated together. This can be used in cases such as images, where an entire segment or region can be ablated, measuring the importance of the segment (feature group). Each input scalar in the group will be given the same attribution value equal to the change in target as a result of ablating the entire feature group. The forward function can either return a scalar per example or a tensor of a fixed sized tensor (or scalar value) for the full batch, i.e. the output does not grow as the batch size increase. If the output is fixed we consider this model to be an "aggregation" of the inputs. In the fixed sized output mode we require `perturbations_per_eval == 1` and the `feature_mask` to be either `None` or for all of them to have 1 as their first dimension (i.e. a feature mask requires to be applied to all inputs). """ def __init__( self, forward_func: Callable[..., Union[int, float, Tensor, Future[Tensor]]] ) -> None: r""" Args: forward_func (Callable): The forward function of the model or any modification of it. """ PerturbationAttribution.__init__(self, forward_func) self.use_weights = False # only used when perturbations_per_eval > 1, where the 1st dim of forward_func's # output must grow as the input batch size. If forward's output is aggregated, # we cannot expand the input to include more perturbations in one call. # If it's False, we will force the validation by comparing the outpus of # the original input and the modified input whose batch size expanded based on # perturbations_per_eval. Set the flag to True if the output of the modified # input grow as expected. Once it turns to True, we will assume the model's # behavior stays consistent and no longer check again self._is_output_shape_valid = False # Considering the case when we permute multiple input tensors at once # through `feature_mask`, we disregard the feature group if the 0th # dim of *any* input tensor in the group is less than # `_min_examples_per_batch_grouped` if defined. # If *all* input tensors in the group are empty, we also skip the feature/ # feature group (not parameterized by `_min_examples_per_batch_grouped`). self._min_examples_per_batch_grouped: Optional[int] = None
[docs] @log_usage(part_of_slo=True) def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, additional_forward_args: Optional[object] = None, feature_mask: Union[None, Tensor, Tuple[Tensor, ...]] = None, perturbations_per_eval: int = 1, show_progress: bool = False, **kwargs: Any, ) -> TensorOrTupleOfTensorsGeneric: r""" Args: inputs (Tensor or tuple[Tensor, ...]): Input for which ablation attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately. baselines (scalar, Tensor, tuple of scalar, or Tensor, optional): Baselines define reference value which replaces each feature when ablated. Baselines can be provided as: - a single tensor, if inputs is a single tensor, with exactly the same dimensions as inputs or broadcastable to match the dimensions of inputs - a single scalar, if inputs is a single tensor, which will be broadcasted for each input value in input tensor. - a tuple of tensors or scalars, the baseline corresponding to each tensor in the inputs' tuple can be: - either a tensor with matching dimensions to corresponding tensor in the inputs' tuple or the first dimension is one and the remaining dimensions match with the corresponding input tensor. - or a scalar, corresponding to a tensor in the inputs' tuple. This scalar value is broadcasted for corresponding input tensor. In the cases when `baselines` is not provided, we internally use zero scalar corresponding to each input tensor. Default: None target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, no target index is necessary. For general 2D outputs, targets can be either: - a single integer or a tensor containing a single integer, which is applied to all input examples - a list of integers or a 1D tensor, with length matching the number of examples in inputs (dim 0). Each integer is applied as the target for the corresponding example. For outputs with > 2 dimensions, targets can be either: - A single tuple, which contains #output_dims - 1 elements. This target index is applied to all examples. - A list of tuples with length equal to the number of examples in inputs (dim 0), and each tuple containing #output_dims - 1 elements. Each tuple is applied as the target for the corresponding example. Default: None additional_forward_args (Any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to forward_func in order following the arguments in inputs. For a tensor, the first dimension of the tensor must correspond to the number of examples. For all other types, the given argument is used for all forward evaluations. Note that attributions are not computed with respect to these arguments. Default: None feature_mask (Tensor or tuple[Tensor, ...], optional): feature_mask defines a mask for the input, grouping features which should be ablated together. feature_mask should contain the same number of tensors as inputs. Each tensor should be the same size as the corresponding input or broadcastable to match the input tensor. Each tensor should contain integers in the range 0 to num_features - 1, and indices corresponding to the same feature should have the same value. If the forward function returns a single scalar per batch, we enforce that the first dimension of each mask must be 1, since attributions are returned batch-wise rather than per example, so the attributions must correspond to the same features (indices) in each input example. If None, then a feature mask is constructed which assigns each scalar within a tensor as a separate feature, which is ablated independently by default. Default: None perturbations_per_eval (int, optional): Allows ablation of multiple features to be processed simultaneously in one call to forward_fn. Each forward pass will contain a maximum of perturbations_per_eval * #examples samples. For DataParallel models, each batch is split among the available devices, so evaluations on each available device contain at most (perturbations_per_eval * #examples) / num_devices samples. If the forward function's number of outputs does not change as the batch size grows (e.g. if it outputs a scalar value), you must set perturbations_per_eval to 1 and use a single feature mask to describe the features for all examples in the batch. Default: 1 show_progress (bool, optional): Displays the progress of computation. It will try to use tqdm if available for advanced features (e.g. time estimation). Otherwise, it will fallback to a simple output of progress. Default: False **kwargs (Any, optional): Any additional arguments used by child classes of FeatureAblation (such as Occlusion) to construct ablations. These arguments are ignored when using FeatureAblation directly. Default: None Returns: *Tensor* or *tuple[Tensor, ...]* of **attributions**: - **attributions** (*Tensor* or *tuple[Tensor, ...]*): The attributions with respect to each input feature. If the forward function returns a scalar value per example, attributions will be the same size as the provided inputs, with each value providing the attribution of the corresponding input index. If the forward function returns a scalar per batch, then attribution tensor(s) will have first dimension 1 and the remaining dimensions will match the input. If a single tensor is provided as inputs, a single tensor is returned. If a tuple of tensors is provided for inputs, a tuple of corresponding sized tensors is returned. Examples:: >>> # SimpleClassifier takes a single input tensor of size Nx4x4, >>> # and returns an Nx3 tensor of class probabilities. >>> net = SimpleClassifier() >>> # Generating random input with size 2 x 4 x 4 >>> input = torch.randn(2, 4, 4) >>> # Defining FeatureAblation interpreter >>> ablator = FeatureAblation(net) >>> # Computes ablation attribution, ablating each of the 16 >>> # scalar input independently. >>> attr = ablator.attribute(input, target=1) >>> # Alternatively, we may want to ablate features in groups, e.g. >>> # grouping each 2x2 square of the inputs and ablating them together. >>> # This can be done by creating a feature mask as follows, which >>> # defines the feature groups, e.g.: >>> # +---+---+---+---+ >>> # | 0 | 0 | 1 | 1 | >>> # +---+---+---+---+ >>> # | 0 | 0 | 1 | 1 | >>> # +---+---+---+---+ >>> # | 2 | 2 | 3 | 3 | >>> # +---+---+---+---+ >>> # | 2 | 2 | 3 | 3 | >>> # +---+---+---+---+ >>> # With this mask, all inputs with the same value are ablated >>> # simultaneously, and the attribution for each input in the same >>> # group (0, 1, 2, and 3) per example are the same. >>> # The attributions can be calculated as follows: >>> # feature mask has dimensions 1 x 4 x 4 >>> feature_mask = torch.tensor([[[0,0,1,1],[0,0,1,1], >>> [2,2,3,3],[2,2,3,3]]]) >>> attr = ablator.attribute(input, target=1, feature_mask=feature_mask) """ # Keeps track whether original input is a tuple or not before # converting it into a tuple. We return the attribution as tuple in the # end if the inputs were a tuple. is_inputs_tuple = _is_tuple(inputs) formatted_inputs, baselines = _format_input_baseline(inputs, baselines) formatted_additional_forward_args = _format_additional_forward_args( additional_forward_args ) formatted_feature_mask = _format_feature_mask(feature_mask, formatted_inputs) assert ( isinstance(perturbations_per_eval, int) and perturbations_per_eval >= 1 ), "Perturbations per evaluation must be an integer and at least 1." with torch.no_grad(): attr_progress: Progress if show_progress: attr_progress = self._attribute_progress_setup( formatted_inputs, formatted_feature_mask, **kwargs, perturbations_per_eval=perturbations_per_eval, ) else: attr_progress = NullProgress() attr_progress.update(0) # Computes initial evaluation with all features, which is compared # to each ablated result. initial_eval: Union[Tensor, Future[Tensor]] = _run_forward( self.forward_func, formatted_inputs, target, formatted_additional_forward_args, ) attr_progress.update() total_attrib: List[Tensor] = [] weights: List[Tensor] = [] flattened_initial_eval: Tensor n_outputs: int attrib_type: dtype if isinstance(initial_eval, torch.Future): raise AssertionError( "when using the attribute function, initial_eval should have " f"non-Future type rather than {type(initial_eval)}" ) initial_eval = _parse_forward_out(initial_eval) ( total_attrib, weights, initial_eval, flattened_initial_eval, n_outputs, attrib_type, ) = process_initial_eval( initial_eval, formatted_inputs, use_weights=self.use_weights ) total_attrib, weights = self._attribute_with_cross_tensor_feature_masks( formatted_inputs, formatted_additional_forward_args, target, baselines, formatted_feature_mask, attr_progress, flattened_initial_eval, initial_eval, n_outputs, total_attrib, weights, attrib_type, perturbations_per_eval, **kwargs, ) attr_progress.close() return cast( TensorOrTupleOfTensorsGeneric, format_result( total_attrib, weights, is_inputs_tuple, use_weights=self.use_weights ), )
def _attribute_with_cross_tensor_feature_masks( self, formatted_inputs: Tuple[Tensor, ...], formatted_additional_forward_args: Optional[Tuple[object, ...]], target: TargetType, baselines: BaselineType, formatted_feature_mask: Tuple[Tensor, ...], attr_progress: Progress, flattened_initial_eval: Tensor, initial_eval: Tensor, n_outputs: int, total_attrib: List[Tensor], weights: List[Tensor], attrib_type: dtype, perturbations_per_eval: int, **kwargs: Any, ) -> Tuple[List[Tensor], List[Tensor]]: feature_idx_to_tensor_idx = self._get_feature_idx_to_tensor_idx( formatted_feature_mask, **kwargs ) all_feature_idxs = list(feature_idx_to_tensor_idx.keys()) (all_features_repeated, additional_args_repeated, target_repeated) = ( _maybe_expand_parameters( perturbations_per_eval, formatted_inputs, formatted_additional_forward_args, target, ) ) num_examples = formatted_inputs[0].shape[0] current_additional_args: object if isinstance(baselines, tuple): reshaped = False reshaped_baselines: list[Union[Tensor, int, float]] = [] for baseline in baselines: if isinstance(baseline, Tensor): reshaped = True reshaped_baselines.append( baseline.reshape((1,) + tuple(baseline.shape)) ) else: reshaped_baselines.append(baseline) baselines = tuple(reshaped_baselines) if reshaped else baselines for i in range(0, len(all_feature_idxs), perturbations_per_eval): current_feature_idxs = all_feature_idxs[i : i + perturbations_per_eval] current_num_ablated_features = min( perturbations_per_eval, len(current_feature_idxs) ) if self._should_skip_inputs_and_warn( current_feature_idxs, feature_idx_to_tensor_idx, formatted_inputs, ): continue # Store appropriate inputs and additional args based on batch size. if current_num_ablated_features != perturbations_per_eval: current_additional_args = ( _expand_additional_forward_args( formatted_additional_forward_args, current_num_ablated_features ) if formatted_additional_forward_args is not None else None ) current_target = _expand_target(target, current_num_ablated_features) expanded_inputs = tuple( feature_repeated[0 : current_num_ablated_features * num_examples] for feature_repeated in all_features_repeated ) else: current_additional_args = additional_args_repeated current_target = target_repeated expanded_inputs = all_features_repeated current_inputs, current_masks = ( self._construct_ablated_input_across_tensors( expanded_inputs, formatted_feature_mask, baselines, current_feature_idxs, feature_idx_to_tensor_idx, current_num_ablated_features, **kwargs, ) ) # modified_eval has (n_feature_perturbed * n_outputs) elements # shape: # agg mode: (*initial_eval.shape) # non-agg mode: # (feature_perturbed * batch_size, *initial_eval.shape[1:]) modified_eval = _run_forward( self.forward_func, current_inputs, current_target, current_additional_args, ) modified_eval = _parse_forward_out(modified_eval) attr_progress.update() assert not isinstance(modified_eval, torch.Future), ( "when use_futures is True, modified_eval should have " f"non-Future type rather than {type(modified_eval)}" ) # Just do the check once. if not self._is_output_shape_valid: check_output_shape_valid( inputs=current_inputs, num_examples=num_examples, initial_eval=initial_eval, modified_eval=modified_eval, perturbations_per_eval=perturbations_per_eval, ) self._is_output_shape_valid = True total_attrib, weights = self._process_ablated_out_full( modified_eval=modified_eval, current_mask=current_masks, flattened_initial_eval=flattened_initial_eval, inputs=current_inputs, n_outputs=n_outputs, total_attrib=total_attrib, weights=weights, attrib_type=attrib_type, ) return total_attrib, weights def _get_feature_idx_to_tensor_idx( self, formatted_feature_mask: Tuple[Tensor, ...], **kwargs: Any ) -> Dict[int, List[int]]: return _get_feature_idx_to_tensor_idx(formatted_feature_mask) def _should_skip_inputs_and_warn( self, current_feature_idxs: List[int], feature_idx_to_tensor_idx: Dict[int, List[int]], formatted_inputs: Tuple[Tensor, ...], ) -> bool: return _should_skip_inputs_and_warn( current_feature_idxs=current_feature_idxs, feature_idx_to_tensor_idx=feature_idx_to_tensor_idx, formatted_inputs=formatted_inputs, min_examples_per_batch_grouped=self._min_examples_per_batch_grouped, ) def _construct_ablated_input_across_tensors( self, inputs: Tuple[Tensor, ...], input_mask: Tuple[Tensor, ...], baselines: BaselineType, feature_idxs: List[int], feature_idx_to_tensor_idx: Dict[int, List[int]], current_num_ablated_features: int, **kwargs: Any, ) -> Tuple[Tuple[Tensor, ...], Tuple[Optional[Tensor], ...]]: ablated_inputs = [] current_masks: List[Optional[Tensor]] = [] tensor_idxs = { tensor_idx for sublist in ( feature_idx_to_tensor_idx[feature_idx] for feature_idx in feature_idxs ) for tensor_idx in sublist } for i, input_tensor in enumerate(inputs): if i not in tensor_idxs: ablated_inputs.append(input_tensor) current_masks.append(None) continue tensor_mask = [] ablated_input = input_tensor.clone() baseline = baselines[i] if isinstance(baselines, tuple) else baselines for j, feature_idx in enumerate(feature_idxs): original_input_size = ( input_tensor.shape[0] // current_num_ablated_features ) start_idx = j * original_input_size end_idx = (j + 1) * original_input_size mask = (input_mask[i] == feature_idx).to(input_tensor.device).long() if mask.ndim == 0: mask = mask.reshape((1,) * input_tensor.dim()) tensor_mask.append(mask) assert baseline is not None, "baseline must be provided" ablated_feature = input_tensor[start_idx:end_idx] * (1 - mask).to( input_tensor.dtype ) + (baseline * mask.to(input_tensor.dtype)) ablated_input = ablated_input.to(ablated_feature.dtype) ablated_input[start_idx:end_idx] = ablated_feature current_masks.append(torch.stack(tensor_mask, dim=0)) ablated_inputs.append(ablated_input) return tuple(ablated_inputs), tuple(current_masks) def _initial_eval_to_processed_initial_eval_fut( self, initial_eval: Future[Tensor], formatted_inputs: Tuple[Tensor, ...] ) -> Tuple[List[Tensor], List[Tensor], Tensor, Tensor, int, dtype]: try: initial_eval_processed = initial_eval.value() if not isinstance(initial_eval_processed, Tensor): raise AssertionError( "initial_eval_to_processed_initial_eval_fut: " "initial_eval should be a Tensor" ) initial_eval_processed = _parse_forward_out(initial_eval_processed) result = process_initial_eval( initial_eval_processed, formatted_inputs, use_weights=self.use_weights ) except FeatureAblationFutureError as e: raise FeatureAblationFutureError( "initial_eval_to_processed_initial_eval_fut func failed" ) from e return result
[docs] @log_usage(part_of_slo=True) def attribute_future( self, inputs: TensorOrTupleOfTensorsGeneric, baselines: BaselineType = None, target: TargetType = None, additional_forward_args: Optional[object] = None, feature_mask: Union[None, Tensor, Tuple[Tensor, ...]] = None, perturbations_per_eval: int = 1, show_progress: bool = False, **kwargs: Any, ) -> Future[TensorOrTupleOfTensorsGeneric]: r""" Almost the same as the attribute function, except that it requires a forward function that returns a Future, and it returns a Future. """ # Keeps track whether original input is a tuple or not before # converting it into a tuple. is_inputs_tuple = _is_tuple(inputs) formatted_inputs, baselines = _format_input_baseline(inputs, baselines) formatted_additional_forward_args = _format_additional_forward_args( additional_forward_args ) formatted_feature_mask = _format_feature_mask(feature_mask, formatted_inputs) assert ( isinstance(perturbations_per_eval, int) and perturbations_per_eval >= 1 ), "Perturbations per evaluation must be an integer and at least 1." with torch.no_grad(): attr_progress: Progress if show_progress: attr_progress = self._attribute_progress_setup( formatted_inputs, formatted_feature_mask, **kwargs, perturbations_per_eval=perturbations_per_eval, ) else: attr_progress = NullProgress() attr_progress.update(0) # Computes initial evaluation with all features, which is compared # to each ablated result. initial_eval: Union[Tensor, Future[Tensor]] = _run_forward( self.forward_func, formatted_inputs, target, formatted_additional_forward_args, ) attr_progress.update() processed_initial_eval_fut: Optional[ Future[Tuple[List[Tensor], List[Tensor], Tensor, Tensor, int, dtype]] ] = None if not isinstance(initial_eval, torch.Future): raise AssertionError( "when using attribute_future, initial_eval should have " f"Future type rather than {type(initial_eval)}" ) processed_initial_eval_fut = initial_eval.then( lambda initial_eval: self._initial_eval_to_processed_initial_eval_fut( initial_eval, formatted_inputs, ) ) return cast( Future[TensorOrTupleOfTensorsGeneric], self._attribute_with_cross_tensor_feature_masks_future( formatted_inputs=formatted_inputs, formatted_additional_forward_args=formatted_additional_forward_args, # noqa: E501 line too long target=target, baselines=baselines, formatted_feature_mask=formatted_feature_mask, attr_progress=attr_progress, processed_initial_eval_fut=processed_initial_eval_fut, is_inputs_tuple=is_inputs_tuple, perturbations_per_eval=perturbations_per_eval, ), )
def _attribute_with_cross_tensor_feature_masks_future( self, formatted_inputs: Tuple[Tensor, ...], formatted_additional_forward_args: Optional[Tuple[object, ...]], target: TargetType, baselines: BaselineType, formatted_feature_mask: Tuple[Tensor, ...], attr_progress: Progress, processed_initial_eval_fut: Future[ Tuple[List[Tensor], List[Tensor], Tensor, Tensor, int, dtype] ], is_inputs_tuple: bool, perturbations_per_eval: int, **kwargs: Any, ) -> Future[Union[Tensor, Tuple[Tensor, ...]]]: feature_idx_to_tensor_idx = self._get_feature_idx_to_tensor_idx( formatted_feature_mask, **kwargs ) all_feature_idxs = list(feature_idx_to_tensor_idx.keys()) (all_features_repeated, additional_args_repeated, target_repeated) = ( _maybe_expand_parameters( perturbations_per_eval, formatted_inputs, formatted_additional_forward_args, target, ) ) num_examples = formatted_inputs[0].shape[0] current_additional_args: object if isinstance(baselines, tuple): reshaped = False reshaped_baselines: list[Union[Tensor, int, float]] = [] for baseline in baselines: if isinstance(baseline, Tensor): reshaped = True reshaped_baselines.append( baseline.reshape((1,) + tuple(baseline.shape)) ) else: reshaped_baselines.append(baseline) baselines = tuple(reshaped_baselines) if reshaped else baselines all_modified_eval_futures: List[Future[Tuple[List[Tensor], List[Tensor]]]] = [] for i in range(0, len(all_feature_idxs), perturbations_per_eval): current_feature_idxs = all_feature_idxs[i : i + perturbations_per_eval] current_num_ablated_features = min( perturbations_per_eval, len(current_feature_idxs) ) if self._should_skip_inputs_and_warn( current_feature_idxs, feature_idx_to_tensor_idx, formatted_inputs, ): continue # Store appropriate inputs and additional args based on batch size. if current_num_ablated_features != perturbations_per_eval: current_additional_args = ( _expand_additional_forward_args( formatted_additional_forward_args, current_num_ablated_features ) if formatted_additional_forward_args is not None else None ) current_target = _expand_target(target, current_num_ablated_features) expanded_inputs = tuple( feature_repeated[0 : current_num_ablated_features * num_examples] for feature_repeated in all_features_repeated ) else: current_additional_args = additional_args_repeated current_target = target_repeated expanded_inputs = all_features_repeated current_inputs, current_masks = ( self._construct_ablated_input_across_tensors( expanded_inputs, formatted_feature_mask, baselines, current_feature_idxs, feature_idx_to_tensor_idx, current_num_ablated_features, **kwargs, ) ) # modified_eval has (n_feature_perturbed * n_outputs) elements # shape: # agg mode: (*initial_eval.shape) # non-agg mode: # (feature_perturbed * batch_size, *initial_eval.shape[1:]) modified_eval = _run_forward( self.forward_func, current_inputs, current_target, current_additional_args, ) attr_progress.update() if not isinstance(modified_eval, torch.Future): raise AssertionError( "when using attribute_future, modified_eval should have " f"Future type rather than {type(modified_eval)}" ) # Need to collect both initial eval and modified_eval eval_futs: Future[ List[ Future[ Union[ Tuple[ List[Tensor], List[Tensor], Tensor, Tensor, int, dtype, ], Tensor, ] ] ] ] = collect_all( [ processed_initial_eval_fut, modified_eval, ] ) ablated_out_fut: Future[Tuple[List[Tensor], List[Tensor]]] = eval_futs.then( lambda eval_futs, current_inputs=current_inputs, current_mask=current_masks, i=i: self._eval_fut_to_ablated_out_fut_cross_tensor( # type: ignore # noqa: E501 line too long eval_futs=eval_futs, current_inputs=current_inputs, current_mask=current_mask, perturbations_per_eval=perturbations_per_eval, num_examples=num_examples, ) ) all_modified_eval_futures.append(ablated_out_fut) attr_progress.close() return self._generate_async_result_cross_tensor( all_modified_eval_futures, is_inputs_tuple, ) def _fut_tuple_to_accumulate_fut_list_cross_tensor( self, total_attrib: List[Tensor], weights: List[Tensor], fut_tuple: Future[Tuple[List[Tensor], List[Tensor]]], ) -> None: try: # process_ablated_out_* already accumlates the total attribution. # Just get the latest value attribs, this_weights = fut_tuple.value() total_attrib[:] = attribs weights[:] = this_weights except FeatureAblationFutureError as e: raise FeatureAblationFutureError( "_fut_tuple_to_accumulate_fut_list_cross_tensor failed" ) from e def _attribute_progress_setup( self, formatted_inputs: Tuple[Tensor, ...], feature_mask: Tuple[Tensor, ...], perturbations_per_eval: int, **kwargs: Any, ) -> Progress: total_forwards = math.ceil( get_total_features_from_mask(feature_mask) / perturbations_per_eval ) total_forwards += 1 # add 1 for the initial eval attr_progress = progress( desc=f"{self.get_name()} attribution", total=total_forwards ) return attr_progress def _generate_async_result_cross_tensor( self, futs: List[Future[Tuple[List[Tensor], List[Tensor]]]], is_inputs_tuple: bool, ) -> Future[Union[Tensor, Tuple[Tensor, ...]]]: accumulate_fut_list: List[Future[None]] = [] total_attrib: List[Tensor] = [] weights: List[Tensor] = [] for fut_tuple in futs: accumulate_fut_list.append( fut_tuple.then( lambda fut_tuple: self._fut_tuple_to_accumulate_fut_list_cross_tensor( # noqa: E501 line too long total_attrib, weights, fut_tuple ) ) ) result_fut = collect_all(accumulate_fut_list).then( lambda x: format_result( total_attrib, weights, is_inputs_tuple, use_weights=self.use_weights ) ) return result_fut def _eval_fut_to_ablated_out_fut_cross_tensor( self, eval_futs: Future[List[Future[List[object]]]], current_inputs: Tuple[Tensor, ...], current_mask: Tuple[Optional[Tensor], ...], perturbations_per_eval: int, num_examples: int, ) -> Tuple[List[Tensor], List[Tensor]]: try: modified_eval = cast(Tensor, eval_futs.value()[1].value()) initial_eval_tuple = cast( Tuple[ List[Tensor], List[Tensor], Tensor, Tensor, int, dtype, ], eval_futs.value()[0].value(), ) if len(initial_eval_tuple) != 6: raise AssertionError( "eval_fut_to_ablated_out_fut_cross_tensor: " "initial_eval_tuple should have 6 elements: " "total_attrib, weights, initial_eval, " "flattened_initial_eval, n_outputs, attrib_type " ) modified_eval = _parse_forward_out(modified_eval) if not isinstance(modified_eval, Tensor): raise AssertionError( "_eval_fut_to_ablated_out_fut_cross_tensor: " "modified eval should be a Tensor" ) ( total_attrib, weights, initial_eval, flattened_initial_eval, n_outputs, attrib_type, ) = initial_eval_tuple # Just do the check once. if not self._is_output_shape_valid: check_output_shape_valid( inputs=current_inputs, num_examples=num_examples, initial_eval=initial_eval, modified_eval=modified_eval, perturbations_per_eval=perturbations_per_eval, ) self._is_output_shape_valid = True total_attrib, weights = self._process_ablated_out_full( modified_eval=modified_eval, inputs=current_inputs, current_mask=current_mask, flattened_initial_eval=flattened_initial_eval, n_outputs=n_outputs, total_attrib=total_attrib, weights=weights, attrib_type=attrib_type, ) except FeatureAblationFutureError as e: raise FeatureAblationFutureError( "_eval_fut_to_ablated_out_fut_cross_tensor func failed" ) from e return total_attrib, weights def _process_ablated_out_full( self, modified_eval: Tensor, current_mask: Tuple[Optional[Tensor], ...], flattened_initial_eval: Tensor, inputs: TensorOrTupleOfTensorsGeneric, n_outputs: int, total_attrib: List[Tensor], weights: List[Tensor], attrib_type: dtype, ) -> Tuple[List[Tensor], List[Tensor]]: # reshape the leading dim for n_feature_perturbed # flatten each feature's eval outputs into 1D of (n_outputs) modified_eval = modified_eval.reshape(-1, n_outputs) # eval_diff in shape (n_feature_perturbed, n_outputs) eval_diff = flattened_initial_eval - modified_eval eval_diff_shape = eval_diff.shape if self.use_weights: for weight, mask in zip(weights, current_mask): if mask is not None: weight += mask.float().sum(dim=0) for i, mask in enumerate(current_mask): if mask is None or inputs[i].numel() == 0: continue eval_diff = eval_diff.reshape( eval_diff_shape + (inputs[i].dim() - 1) * (1,) ) eval_diff = eval_diff.to(total_attrib[i].device) total_attrib[i] += (eval_diff * mask.to(attrib_type)).sum(dim=0) return total_attrib, weights