# pyre-strict
from typing import Callable, cast, List, Optional
import torch.nn as nn
from captum._utils.models.model import Model
from torch import Tensor
from torch.utils.data import DataLoader
class LinearModel(nn.Module, Model):
SUPPORTED_NORMS: List[Optional[str]] = [None, "batch_norm", "layer_norm"]
# pyre-fixme[24]: Generic type `Callable` expects 2 type parameters.
# pyre-fixme[2]: Parameter must be annotated.
def __init__(self, train_fn: Callable, **kwargs) -> None:
r"""
Constructs a linear model with a training function and additional
construction arguments that will be sent to
`self._construct_model_params` after a `self.fit` is called. Please note
that this assumes the `self.train_fn` will call
`self._construct_model_params`.
Please note that this is an experimental feature.
Args:
train_fn (Callable)
The function to train with. See
`captum._utils.models.linear_model.train.sgd_train_linear_model`
and
`captum._utils.models.linear_model.train.sklearn_train_linear_model`
for examples
kwargs
Any additional keyword arguments to send to
`self._construct_model_params` once a `self.fit` is called.
"""
super().__init__()
self.norm: Optional[nn.Module] = None
self.linear: Optional[nn.Linear] = None
self.train_fn = train_fn
# pyre-fixme[4]: Attribute must be annotated.
self.construct_kwargs = kwargs
def _construct_model_params(
self,
in_features: Optional[int] = None,
out_features: Optional[int] = None,
norm_type: Optional[str] = None,
affine_norm: bool = False,
bias: bool = True,
weight_values: Optional[Tensor] = None,
bias_value: Optional[Tensor] = None,
classes: Optional[Tensor] = None,
) -> None:
r"""
Lazily initializes a linear model. This will be called for you in a
train method.
Args:
in_features (int):
The number of input features
output_features (int):
The number of output features.
norm_type (str, optional):
The type of normalization that can occur. Please assign this
to one of `PyTorchLinearModel.SUPPORTED_NORMS`.
affine_norm (bool):
Whether or not to learn an affine transformation of the
normalization parameters used.
bias (bool):
Whether to add a bias term. Not needed if normalized input.
weight_values (Tensor, optional):
The values to initialize the linear model with. This must be a
1D or 2D tensor, and of the form `(num_outputs, num_features)` or
`(num_features,)`. Additionally, if this is provided you need not
to provide `in_features` or `out_features`.
bias_value (Tensor, optional):
The bias value to initialize the model with.
classes (Tensor, optional):
The list of prediction classes supported by the model in case it
performs classificaton. In case of regression it is set to None.
Default: None
"""
if norm_type not in LinearModel.SUPPORTED_NORMS:
raise ValueError(
f"{norm_type} not supported. Please use {LinearModel.SUPPORTED_NORMS}"
)
if weight_values is not None:
in_features = weight_values.shape[-1]
out_features = (
1 if len(weight_values.shape) == 1 else weight_values.shape[0]
)
if in_features is None or out_features is None:
raise ValueError(
"Please provide `in_features` and `out_features` or `weight_values`"
)
if norm_type == "batch_norm":
self.norm = nn.BatchNorm1d(in_features, eps=1e-8, affine=affine_norm)
elif norm_type == "layer_norm":
self.norm = nn.LayerNorm(
in_features, eps=1e-8, elementwise_affine=affine_norm
)
else:
self.norm = None
self.linear = nn.Linear(in_features, out_features, bias=bias)
if weight_values is not None:
self.linear.weight.data = weight_values
if bias_value is not None:
if not bias:
raise ValueError("`bias_value` is not None and bias is False")
self.linear.bias.data = bias_value
if classes is not None:
# pyre-fixme[16]: `Optional` has no attribute `classes`.
self.linear.classes = classes
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def fit(self, train_data: DataLoader, **kwargs):
r"""
Calls `self.train_fn`
"""
return self.train_fn(
self,
dataloader=train_data,
construct_kwargs=self.construct_kwargs,
**kwargs,
)
def forward(self, x: Tensor) -> Tensor:
assert self.linear is not None
if self.norm is not None:
x = self.norm(x)
# pyre-fixme[29]: `Optional[nn.modules.linear.Linear]` is not a function.
return self.linear(x)
def representation(self) -> Tensor:
r"""
Returns a tensor which describes the hyper-plane input space. This does
not include the bias. For bias/intercept, please use `self.bias`
"""
assert self.linear is not None
return self.linear.weight.detach()
def bias(self) -> Optional[Tensor]:
r"""
Returns the bias of the linear model
"""
if self.linear is None or self.linear.bias is None:
return None
return self.linear.bias.detach()
def classes(self) -> Optional[Tensor]:
if self.linear is None or self.linear.classes is None:
return None
return cast(Tensor, self.linear.classes).detach()
[docs]
class SGDLinearModel(LinearModel):
# pyre-fixme[2]: Parameter must be annotated.
def __init__(self, **kwargs) -> None:
r"""
Factory class. Construct a a `LinearModel` with the
`sgd_train_linear_model` as the train method
Args:
kwargs
Arguments send to `self._construct_model_params` after
`self.fit` is called. Please refer to that method for parameter
documentation.
"""
# avoid cycles
from captum._utils.models.linear_model.train import sgd_train_linear_model
super().__init__(train_fn=sgd_train_linear_model, **kwargs)
[docs]
class SGDLasso(SGDLinearModel):
# pyre-fixme[2]: Parameter must be annotated.
def __init__(self, **kwargs) -> None:
r"""
Factory class to train a `LinearModel` with SGD
(`sgd_train_linear_model`) whilst setting appropriate parameters to
optimize for ridge regression loss. This optimizes L2 loss + alpha * L1
regularization.
Please note that with SGD it is not guaranteed that weights will
converge to 0.
"""
super().__init__(**kwargs)
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
[docs]
def fit(self, train_data: DataLoader, **kwargs):
# avoid cycles
from captum._utils.models.linear_model.train import l2_loss
return super().fit(train_data=train_data, loss_fn=l2_loss, reg_term=1, **kwargs)
[docs]
class SGDRidge(SGDLinearModel):
# pyre-fixme[2]: Parameter must be annotated.
def __init__(self, **kwargs) -> None:
r"""
Factory class to train a `LinearModel` with SGD
(`sgd_train_linear_model`) whilst setting appropriate parameters to
optimize for ridge regression loss. This optimizes L2 loss + alpha *
L2 regularization.
"""
super().__init__(**kwargs)
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
[docs]
def fit(self, train_data: DataLoader, **kwargs):
# avoid cycles
from captum._utils.models.linear_model.train import l2_loss
return super().fit(train_data=train_data, loss_fn=l2_loss, reg_term=2, **kwargs)
class SGDLinearRegression(SGDLinearModel):
# pyre-fixme[2]: Parameter must be annotated.
def __init__(self, **kwargs) -> None:
r"""
Factory class to train a `LinearModel` with SGD
(`sgd_train_linear_model`). For linear regression this assigns the loss
to L2 and no regularization.
"""
super().__init__(**kwargs)
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def fit(self, train_data: DataLoader, **kwargs):
# avoid cycles
from captum._utils.models.linear_model.train import l2_loss
return super().fit(
train_data=train_data, loss_fn=l2_loss, reg_term=None, **kwargs
)
[docs]
class SkLearnLinearModel(LinearModel):
# pyre-fixme[2]: Parameter must be annotated.
def __init__(self, sklearn_module: str, **kwargs) -> None:
r"""
Factory class to construct a `LinearModel` with sklearn training method.
Please note that this assumes:
0. You have sklearn and numpy installed
1. The dataset can fit into memory
SkLearn support does introduce some slight overhead as we convert the
tensors to numpy and then convert the resulting trained model to a
`LinearModel` object. However, this conversion should be negligible.
Args:
sklearn_module
The module under sklearn to construct and use for training, e.g.
use "svm.LinearSVC" for an SVM or "linear_model.Lasso" for Lasso.
There are factory classes defined for you for common use cases,
such as `SkLearnLasso`.
kwargs
The kwargs to pass to the construction of the sklearn model
"""
# avoid cycles
from captum._utils.models.linear_model.train import sklearn_train_linear_model
super().__init__(train_fn=sklearn_train_linear_model, **kwargs)
self.sklearn_module = sklearn_module
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
[docs]
def fit(self, train_data: DataLoader, **kwargs):
r"""
Args:
train_data
Train data to use
kwargs
Arguments to feed to `.fit` method for sklearn
"""
return super().fit(
train_data=train_data, sklearn_trainer=self.sklearn_module, **kwargs
)
[docs]
class SkLearnLasso(SkLearnLinearModel):
# pyre-fixme[2]: Parameter must be annotated.
def __init__(self, **kwargs) -> None:
r"""
Factory class. Trains a `LinearModel` model with
`sklearn.linear_model.Lasso`. You will need sklearn version >= 0.23 to
support sample weights.
"""
super().__init__(sklearn_module="linear_model.Lasso", **kwargs)
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
[docs]
def fit(self, train_data: DataLoader, **kwargs):
return super().fit(train_data=train_data, **kwargs)
[docs]
class SkLearnRidge(SkLearnLinearModel):
# pyre-fixme[2]: Parameter must be annotated.
def __init__(self, **kwargs) -> None:
r"""
Factory class. Trains a model with `sklearn.linear_model.Ridge`.
Any arguments provided to the sklearn constructor can be provided
as kwargs here.
"""
super().__init__(sklearn_module="linear_model.Ridge", **kwargs)
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
[docs]
def fit(self, train_data: DataLoader, **kwargs):
return super().fit(train_data=train_data, **kwargs)
[docs]
class SkLearnLinearRegression(SkLearnLinearModel):
# pyre-fixme[2]: Parameter must be annotated.
def __init__(self, **kwargs) -> None:
r"""
Factory class. Trains a model with `sklearn.linear_model.LinearRegression`.
Any arguments provided to the sklearn constructor can be provided
as kwargs here.
"""
super().__init__(sklearn_module="linear_model.LinearRegression", **kwargs)
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
[docs]
def fit(self, train_data: DataLoader, **kwargs):
return super().fit(train_data=train_data, **kwargs)
class SkLearnLogisticRegression(SkLearnLinearModel):
# pyre-fixme[2]: Parameter must be annotated.
def __init__(self, **kwargs) -> None:
r"""
Factory class. Trains a model with `sklearn.linear_model.LogisticRegression`.
Any arguments provided to the sklearn constructor can be provided
as kwargs here.
"""
super().__init__(sklearn_module="linear_model.LogisticRegression", **kwargs)
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def fit(self, train_data: DataLoader, **kwargs):
return super().fit(train_data=train_data, **kwargs)
class SkLearnSGDClassifier(SkLearnLinearModel):
# pyre-fixme[2]: Parameter must be annotated.
def __init__(self, **kwargs) -> None:
r"""
Factory class. Trains a model with `sklearn.linear_model.SGDClassifier(`.
Any arguments provided to the sklearn constructor can be provided
as kwargs here.
"""
super().__init__(sklearn_module="linear_model.SGDClassifier", **kwargs)
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def fit(self, train_data: DataLoader, **kwargs):
return super().fit(train_data=train_data, **kwargs)